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Abstract

This work presents a numerical technique for simulating incompressible, isothermal, viscoelastic flows of fluids gov-
erned by the upper-convected Maxwell (UCM) and K-BKZ (Kaye-Bernstein, Kearsley and Zapas) integral models.
The numerical technique described herein is an extension of the GENSMAC method to the solution of the momentum
and mass conservation equations to include integral constitutive equations. The governing equations are solved by the
finite difference method on a staggered grid using a Marker-and-Cell approach. The Finger tensor B, () is computed in
an Eulerian framework using the ideas of the deformation fields method. However, improvements to the deformation fields
method are introduced: the Finger tensor B, (X,¢) is obtained by a second-order accurate method and the stress tensor
7(x, ) is computed by a second-order quadrature formula. The numerical method presented in this work is validated
by comparing the predictions of velocity and stress fields in two-dimensional fully-developed channel flow of a Maxwell
fluid with the corresponding analytic solutions. Furthermore, the flow through a planar 4:1 contraction is investigated
and the numerical results were compared with the corresponding experimental data. Finally, the UCM and the K-BKZ
models were used to simulate the planar 4:1 contraction flow over a wide range of Reynolds and Weissenberg numbers
and the numerical results obtained are in agreement with published data.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Integral constitutive equation; Upper-convected Maxwell model; K-BKZ model; Deformation fields method; Finite difference;
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1. Introduction

The numerical simulation of incompressible and compressible non-Newtonian fluid flows is an active area
of research in computational mechanics, but most numerical techniques for simulating viscoelastic fluid flows
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employ differential rather than integral constitutive models. If many rheological constitutive equations have
both a differential and an integral form, other models exist only in one form or become extremely complex
when transforming from one form to another without simplifying assumptions. Therefore, efficient numerical
methods are required to deal with both types of equations. When dealing with differential constitutive equa-
tions only present and recent fields of velocity and stress are required to the computation of the stress tensor,
whereas for integral models the calculation of the stress field needs an extensive account of the history of past
deformations. Hence, integral models require the use of time-dependent numerical methods, even when the
flow is steady, leading to a large overhead of computational resources. Therefore, it comes as no surprise that
the majority of numerical investigations relies on differential constitutive equations, using diverse numerical
methods such as finite elements (e.g. [23,27,28,7], to cite only a few), finite volumes (e.g. [26,52]) and finite dif-
ference (e.g. [45,48]). A more extensive review of computational rheology up to 2003 is presented in the book
by Owens and Phillips [32]. Essentially only over the last decade integral models have been used more
frequently.

Numerical methods for solving integral viscoelastic models have usually employed finite elements (e.g.
[29,34,19,31]) and one of the most used integral constitutive equations is the K-BKZ model [17,5], which pro-
vides a good fitting to experimental data for some fluids and therefore, it has been studied by various inves-
tigators (e.g. [19,21,20,22,42]). The KBK-Z model is a integral equation containing the information about the
deformation history of the fluid, and this particularity is enough to bring numerical challenges, which have
been investigated by a number of researchers in the literature (e.g. [43,44,41,40]). An updated review on finite
element techniques for solving complex flows of fluids described by integral constitutive models has been pre-
sented by Keunings [18]. This review concluded that both the Lagrangian integral method [14] and the defor-
mation fields method [34] can cope with transient flows.

The numerical simulation of the flow through a planar contraction is a classical benchmark problem in com-
putational rheology. Contraction flows are interesting because non-Newtonian fluids exhibit a wide variety of
behaviours depending on their rheology. In particular, the study of the mechanisms involved in the formation
of corner and lip vortices has attracted the attention of many researchers. It has been shown that the length
and intensity of these vortices change with the Weissenberg and Reynolds numbers as well as with the type of
the contraction (planar or axisymmetric; with a sharp or rounded entry, etc.) and the fluid rheology. There
are several numerical works devoted to the simulation of contraction flows and the results presented depend
on the methodology and the constitutive equation employed. On the experimental side there is also a significant
number of works. For instance, Evans and Walters [9] analysed the effect of small changes in the geometry of the
contraction entrance. They did a series of experiments using Boger fluids and shear-thinning fluids and showed
that the growth of the vortices was a function of the contraction ratio. White and Baird [51] investigated the
behaviour of polystyrene (PS) and low density polyethylene (LDPE) in planar 4:1 contraction and reported that
for the PS fluid no secondary flow was formed, although the shear viscosity of both fluids was similar. It was sug-
gested that the formation of vortices depended on extensional properties of the fluid and in particular, the exten-
sional stress growth. Purnode and Crochet [36]employed the FENE-P model to simulate the experimental results
of Evans and Walters [9,10] for the flow through a planar contraction. They investigated the influence of the con-
traction ratio, the concentration of the polymer and the shape of the corners at the contraction entrance. The
numerical results presented good qualitative agreement with the experimental results showing the appearance
of “lip vortices” at several Weissenberg and Reynolds numbers. Mompean and Deville [26] used an algorithm
based on the MAC method [13] with finite volumes for simulating the two-dimensional flow of an Oldroyd-B
fluid in a 4:1 planar contraction. The three-dimensional flow through a 4:1 contraction was also investigated
by Xue et al. [53] using the UCM and the PTT constitutive equations. Their results showed that experimental
measurements can be reproduced if the fluid is characterized by an appropriate constitutive equation. Mesh
refinement for the 2D case using an Oldroyd-B model was also considered in the work of Xue et al. [53]. They
reported that different results related to vortex activity were obtained depending on the degree of refinement
of the mesh used in the calculations. Alves et al. [3] studied experimentally the flow of Boger fluids in a 4:1 3D
square/square contraction, and observed complex flow patterns with appearance of a lip vortex followed by
divergent streamlines and elastic instabilities at higher flow rates.

Contraction flows have also been simulated by integral models. Viriyayuthakorn and Caswell [50] presented
a finite element technique for solving a single memory integral equation. They calculated the integral by a
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Laguerre quadrature formula and presented a technique for computing the particle paths. They simulated the
flow through a 4:1 axisymmetric contraction and the results showed an enhancement of the size of the corner
vortex when the Deborah/Weissenberg number increased from one to two. Luo and Mitsoulis [21] presented a
finite element technique for simulating axisymmetric contraction flows using the K-BKZ constitutive equa-
tion. They performed a study of the effect of the extensional viscosity on the behaviour of the vortices. They
showed that by varying the parameter f§ in the K-BKZ equation the size of the corner vortex changed and the
appearance of lip vortices was affected. Later, Luo [19] presented a numerical technique using finite volumes
and an ADI method for solving the momentum equations on a staggered grid. Numerical results of the flow
through a 5.75:1 contraction using the K-BKZ equation were presented and reported a better performance
than the finite element method used in the previous work [21].

In this work, we develop a finite difference technique for simulating flows governed by integral constitutive
equations and in particular we solve the upper-convected Maxwell (UCM) and the K-BKZ constitutive equa-
tions. The conservation equations are solved following the approach used by Tomé et al. [45]. To calculate the
extra-stress tensor we employ the deformation fields method introduced by Peters et al. [34] (see also [49]). This
methodology allows the Finger tensor to be calculated in a fixed frame of reference. Peters et al. [34] used the
fact that the upper-convected derivative of the Finger tensor is null in order to convect it in time. Later, Hul-
sen et al. [15] showed the numerical drawbacks of this approach and proposed a modification by adding to the
upper-convected derivative a term containing a derivative with respect to the elapsed time, s = ¢ — #. In this
work, the Finger tensor is calculated at each time-step with the equation used by Peters et al. [34], but employ-
ing a different approach from both works [15,34].

This paper is organized as follows: after presenting the governing equations in Section 2, the methodol-
ogy employed for calculating the extra-stress tensor is described in Section 3. The numerical method is out-
lined in Section 4 and the finite difference approximations are described in Section 5. Section 6 is used to
validate the procedure to calculate the extra-stress in simple shear and elongational flows. Section 7 presents
numerical results for the flow of UCM and K-BKZ fluids in a two-dimensional channel and includes a
mesh refinement study to quantify their numerical uncertainty. In Section 7.3, the 4:1 planar contraction
flow measured by Quinzani et al. [37] is simulated using the K-BKZ constitutive equation and the predic-
tions are compared with their experimental data. Finally, a parametric investigation of the same flow is car-
ried out for UCM and K-BKZ fluids in order to assess the effect of Weissenberg number and some of the
results are compared with data of Alves et al. [1] as well as with new results using the same finite-volume
code [1,2] written for the differential form of the UCM constitutive equation. A summary and conclusions
close the paper.

2. Basic equations

The governing equations for isothermal incompressible flows are the mass and the momentum conservation
equations, given by

V-v=0, (1)
ov
Po {5 +V- (Vv)] =—Vp+n,VV+ V- S+ peg, (2)

where p, is the fluid density, v is the velocity vector, p is the pressure, g is the acceleration of gravity vector and
S is an elastic tensor related to the extra-stress tensor of the fluid by = = 5,7 + S where y = Vv + (Vv)T is the
rate of deformation tensor. This decoupling of the extra-stress tensor into Newtonian and elastic contributions
is inspired by the EVSS method of Rajagopalan et al. [39] for differential constitutive equations and promotes
numerical stability.

The extra-stress tensor is given by an adequate constitutive equation, such as the integral K-BKZ consti-
tutive equation presented by Papanastasiou et al. [33]

(1) = /t Mt —¢)H(I1,1,)B,()d?f, (3)
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where the memory function

mi ,
Ay it

M(it—1)= e m 4
i==> % @
contains a spectrum of relaxation times and viscosity coefficients. The function H(/;,1,) is given by
o

H(11712) - 0(+ﬁ]1 +(1 _ﬁ)12
The tensor B,(¢) is the Finger tensor, which quantifies the deformation, i.e. the position of fluid particles at
present time ¢ relative to their position at the elapsed time #. Other quantities appearing in (3) are
Iy = tr[By(¢)] and I, =1 ((1 1)? — tr[B2(¢)]), the first and second invariants of B,(¢), respectively. The parame-
ters a,, An, @ and f of the model are obtained from the rheological fluid properties.

We shall also be interested in the upper-convected Maxwell (UCM) model given in its integral form as

o) = 1 " M- OByt (s5)

This model is a particular case of the K-BKZ equation and is obtained by setting H(/,,/,) = 1. Although the
UCM model is less realistic it is frequently used in numerical investigations due to its simplicity and especially
the numerical problems it poses due to unbounded stresses that may develop in extensional flows. Indeed, as is
well-known, robust methods developed for the UCM model will work well with other more realistic constitu-
tive equations.

Egs. (1)—(5) can be written in non-dimensional form by using the following dimensionless variables:

_ v _ x _ U _ g p < S

V=—, X=+, t=—1 = = ) S= )
U L L 8 g PTL0 poU?

_ 7 _p . A ap

n=— p=-— im_ia m (m 1727 vml)a
Mo Po e poU?

where L, U, g, 1, po, Ao are characteristic values for length, velocity, gravity, viscosity, density and relaxation
time, respectively. Introducing these variables in Eqs. (1)—(3) leads to the following set of normalised equa-
tions, which must be solved numerically:

V-v=0, (6)
@-FV-(VV):—VP-FLVZV-FV-S-FLg (7)
ot Re )
! l ay, _a=t ,
0= [ 3 e ®
S—t— 1y, )
Re

where f[B,(¢)] = H(I;,1,)B,(¢) for the K-BKZ model and f[B,(#)] = B,(¢) if the UCM model is employed.
The bars were omitted for clarity. In these equations, Re = % is the Reynolds number and We = 4o ¥ is
the Weissenberg number.

2.1. Boundary conditions

In order to solve Egs. (6)—(9) it is necessary to specify boundary conditions. For the velocity vector these
are: on rigid boundaries the no-slip condition, at fluid entrances (inflows), usually far from the region of inter-
est where the flow is assumed fully-developed, the normal velocity (U") is specified by a parabolic profile and
the tangential velocity (U") is set to zero. The indices n, and t denote normal and tangential directions relative
to the boundary, respectively. At fluid exits (outflows), again located far from the region of interest, the flow is
assumed fully-developed and so the homogeneous Neumann condition & = 0 is adopted.

on
The calculation of the extra-stress tensor is discussed in the next section.
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3. Computation of the extra-stress tensor

The variable used by Peters et al. [34] and Hulsen et al. [15], to perform the integration of (8) to calculate the
extra-stress is the elapsed time, s = ¢ — ¢, i.e.

ﬂg:AwM@maxmw. (10)

By making this change of variable the Finger tensor B,(z) does not become exclusively a function of the
elapsed time s = ¢ — ¢, but remains dependent on the present time ¢ although not explicitly. For instance,
for a single mode UCM fluid, m; =1 in (8), the evolution of the shear stress component t¥(f) is given
by

t Ly
fwgz/ DB (1)de (11)
—oo
Assuming a flow with a constant shear rate, 7, the deformation history is given by (cf. [6,33]):
BY=9(t—-1), t>0, (>0,
BY =9, t>0, { <0.

The integral in Eq. (8) for t can be split into two integrals using the intervals [—oo,0] and [0, 7], since the
Finger tensor takes distinct values. Thus, the stress is given by

0 ’ t !
a t—t . aj t—1r)\.
™(t) = —exp | —— wtdt’—i—/ — ex <——)w t—17)dr. 12
(t) T p( P )(/) Aried S p(t—=1) (12)
Using this idea, the approach developed in this work takes the time # as the reference time so that integrals of

type (12) are solved at each time-step. The main ideas are taken from Peters et al. [34] and Hulsen et al. [15],
namely, the Finger tensor at time ¢ is computed using

%Bﬂ(x, 1) +v(x,1) - VB, (x,1) = [Vv(x, )] - By(X, 1) + Bu(x, 1) - V¥(x,1). (13)

The new methodology proposed here for calculating the extra-stress tensor (¢) at time ¢ = ¢, + d¢ relies on the
following sequence of steps:

(a) Discretization of the time interval [0, 7] into a number of time subintervals thus defining a set of integra-
tion nodes 7, which are intermediate times between 0 and ¢.

(b) Computation of the Finger tensor at the nodes #,, namely, B/k(t)-

(c) Calculation of the integral equation (8).

These three steps are based on the ideas of the deformation fields introduced by Peters et al. [34], but
employing a different approach to be discussed next.

3.1. Discretization of the time interval [0, 1]

For ease of understanding let us assume the memory function contains a single mode, i.e. a single exponen-

= . .
tial term, M (¢t — ¢') = ﬁe A" This is a fast decaying function of ¢ and therefore, one should not take equally

spaced subintervals in [0, 7], but smaller subintervals near the present time ¢, where the variation of M (¢ — ¢') is
faster than near ¢ = 0, where the variation of M(z — ') is slower. There are many ways of discretizing the inter-
val [0, 7] obeying this criterion and here a simple and direct procedure based on the behaviour of the memory
function is employed. First, the interval [M(¢),M(0)] is split into N equally spaced subintervals obtaining
(N+1) values M, =M(t) +kdM with k=0,1,2,... N and dM = [M(t) — M(0)]/N. Next, the inverse
image of these memory values is determined leading to (N + 1) values of ¢, given by
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A We

ap

t;(t):)v]Weln< Mk> +t k=0,1,...,N. (14)
For the general case of a multimode memory function the same procedure is applied for each exponential term
M, = (ap/ (I We))e 1~ /2P leading to a different set of t, values for each mode m, expressed by an equation
similar to Eq. (14). Since a single set of subintervals is required for all modes, the final values of #, are obtained
by the simple arithmetic averaging of Eq. (14)
2 meile, (0)

t(t) = ="—= 15

() = St (15)
where 7, is the value obtained for each mode m. Fig. 1 displays how the interval [0,¢] is discretized.

This procedure for calculating the integration nodes ¢, is performed at each time-step.

3.2. Computation of the Finger tensor

Henceforth, we will use as much as possible the index notation for compactness. Here repeated indices indi-

cate a sum over all components. Considering that Vv;; = 77, the ij component of the Finger tensor at time
t =t, + dt, denoted by B;’ (o (), is calculated from the values of B’ )(t,) using the following equation:
0 0 Ou Ou;
—B/,(t B/ =B/, () +B} / 16
5B (1) + 5 B (0] = 5B () + B, (022 (16)

with the condition BY(¢) = 67, where 6" is the Kronecker delta. )
Eq. (16) is solved by the explicit Euler method. Thus, given the fields at time #,, the fields By, | (x, ), where
t =t, + dt, are computed by ‘

Bii(t,,)( ) Bl/ (Xv tﬂ)

1 (tn)

a[ul(xa tn)Bi{ (X, tn)] .
s {_ a0 1)) dui(x,1,)

B, (x.1,) + B, <>M} (17)

ox; ‘ ox; ox;

At this stage the fields at time #,(¢,), namely B” (x, 1), are known. To calculate B/ » (X, ) a second-order poly-
nomial interpolation is used. For example, if tg( ) € [t (t), t.1 (2,)] then B’ o (X, t) is calculated by a second-
order interpolation using the values of qu (o (X:10), B’j( )(x,7) and B’ n )(x t) as illustrated in Fig. 2 for the
case of simple shear flow, where B’ y() 7(t — ¢'). For instance, if we use Lagrange interpolation, B (x t) is
computed by the formula

B (%.0) = (B, + 11 (6B, + BB, (18)

n )

where 1y(7,(1)), L1 (t,(¢)), [»(¢,(¢)) are the Lagrange polynomials at points #,_,(z,), #,(t,), ;. (%,), respectively.

M@-t")

M(o)

M(-t;)

M(-t7)

t 1

Fig. 1. Discretization of the time interval [0,7]. The values 7, are calculated as the inverse image of M(¢).
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B,,
@B (tp)
t ()
(tn+1)
(t, )
(tn+1)
+1
fp(tn)  t(tn) i5(in) ty(tn} ty(tn)
to(tnel)  t(tne1) ti(tne1)  ti(tna1) t;(tnel)=tnel

Fig. 2. Calculation of the Finger tensor at times #(¢).

This interpolation procedure is important in order to compute the correct value of the Finger tensor. Other-
wise, the values of the Finger tensor at 7,(¢) would be approximated by the values at #,(¢,), which would cause
a large error as time increases (see Fig. 3).

The components of the Finger tensor are calculated and stored at each past time ,k = 0,1,...,N. Eq. (17)
is solved by the finite difference method and the corresponding algebraic equations are given in Section 5.

3.2.1. Calculation of the Finger tensor on mesh boundaries
To approximate the derivatives of the Finger tensor in the convective terms of Eq. (17) the high resolution
CUBISTA scheme [2] is used. This scheme requires the values of the variables at upstream far neighbour
points relative to the point where the derivative is being calculated. For points well within the computational
domain the expressions are given by Alves et al. [2] and here only the points near boundaries are discussed.
The flow problems dealt with in this work have orthogonal boundaries aligned with a Cartesian coordinate
system and this is considered in the following:

¢ Rigid boundary
Using indices ¢ and n to denote tangential and normal directions to the (stationary) wall, respectively, the
no-slip condition and the continuity equation imply u; = 0; S_Z, =0, g% = 0, so that only the velocity deriv-
ative of the tangential velocity in respect to the direction normal to the wall is non-zero (2% #0). For
other quantities in Eq. (16) a% = 0, leading to
0 Oy . Ou,;

—BJ (t BY ()+B" (1)=—L. 19
ot ’k(m() on tk(:n)()—’_ w()an (19)

@ time tn

O time #n+1 with interpolation

@ time #p+7 without interpolation

| .
tk (t, ) tk (1 ) tn tnel

Fig. 3. Calculation of the Finger tensor without interpolation.
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e Inflows
At inflows a fully-developed shear flow is set. If the unitary vector of direction ¢ is embedded in the
inflow plane, the differential equation simplifies to

o8 0 o
k(f,,) U; it auj a
—a —aw Bf (=L withu =
ot axt Yeten) (6) + Yeten) () O, with u, = 0 and o

=0,

where n is the direction normal to the inflow plane. For instance, for a two-dimensional flow (e.g. see [6])

Bﬁ“(r)—(ag‘;)2<r—r'>2+1; B0 = (F2) a0 B0 =1 (20)

For a 3D flow the other normal component of tensor B is also unitary, and for the shear components two
situations arise: for the component B™ where t' is the special tangential direction along which there is a
non-zero velocity gradient, Eq. (20) holds, whereas for the other shear components B" = 0.

e Outflows
On outflows the homogeneous Neumann condition for the Finger tensor holds. If n denotes a direction
normal to the outflow plane, the following condition is set:

0B (1) _

o (21)

3.3. Computation of the extra-stress tensor t(X,t)

Having obtained the integration points # (¢) and B (x,1), the computation of the stress tensor is per-
formed as follows.
First, the constitutive equation is written as

(X, 1) / Mt — HE[B,(x,1)]dd + {/ Mt — ¢)f[B,(¢)]ds } (22)

where for the K-BKZ model, the function f[B,(¢)] is given by
O(B,/ (X, t)
o—3+pL+ (1 -p)
and f[B,(¢)] = B, (z) if the UCM model is employed. For simplicity, we consider a single mode model m; = 1 in

the memory function (4); the case m; > 1 is analogous.
For ¢ < 0, B,(x,#) = By(x, ¢) is assumed. Thus, the first integral in (22) takes the form of

0 /
ay 7."—”% /
1 I L (23)

f[Bl’ (X7 t)] =

and can be solved exactly because f[B, (x,)] is a constant.
The integrals in the summation are solved by a second-order integration formula using the method of unde-
termined coefficients, leading to the following expression:

J
Doks2

M (t — ¢)E[B, (1)]df = i:A_,-f[BﬂZWI (1)), (24)

where the coefficients 4; (j = 1,2,3) are the solution of the following linear system of equations (see [16]):

I;(1) = 41 + 4, + 43 = by,
(1) = Aity, + Aoty | + Asty , = by, (25)
I5(17) = Aty + Ast5 + Aty = by,
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bk 1 -t , 4 , ., f’)
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2/,+7 1 -t (',Zkgrzir) (t/Z/_f’)
= —e 1 dl =aje 7 —e |,
f/ ll

2%
(@

2k+2

- %y

1

w2 1 =) Wy p T (5~ (1)
by :/ e 2dr = l{t’fkﬂe A gl T =20 (s — A)E T = (fy — Ar)e | b
[/

1

The solution of this linear system is given by

_ (bs — t5,b1) — (by — 1 b1)(thy + 1)
(th = topin) (g — topin)
(b2 - t,Zkbl) B (t,2k+2 - tlzk)A3

)

A2: )

/ /
Doyt — By

Ay = by — (4, + 43).

4. Numerical method

Even though the implementation and the calculations in this paper are for two-dimensional Cartesian
flows, this description of the numerical method is general. Egs. (6)—(9) are solved following the ideas of Tomé
et al. [45], which are briefly described next. The momentum and mass conservation equations are solved using
a projection method followed by the solution of the constitutive equation for the extra-stress tensor according
to the following algorithm.

Given the velocity field u;(x,¢,), the extra-stress tensor at time ¢,, and the corresponding boundary condi-
tions, the following sequence of steps computes the velocity, pressure and extra-stress tensor fields at time
tiy = t, + AL

Step I:

Step 2:

Step 3:

Step 4:

Step 5:

Calculate an intermediate velocity field, #;(x, #,.1), from
65!,- a ( ) + 1 6 6u,- @Sil
e () +— — 2 >
ot ox; ! Re 0Ox; \ Ox; ox;
with @;(x,1,) = u;(X, t,) using the correct boundary conditions for i;(x,#,,1). It can be shown that
u;(x,t,11) possesses the correct vorticity at time ¢,,; (see [46]). However, a“’ 75 0 so that there exists

(26)

a potential function (X, #,,) such that u;(x, t,11) = (X, t,41) — a‘/’(’a‘# where by continuity
i alp(X, tn+1) — aﬁl(xa tn+1) ) (27)
ox; ox; ox;

Solve the Poisson equation (27) with the condition a/, = 0 on rigid boundaries and inflows and y = 0
on outflows.
Compute the new velocity vector field

_ o oY(x,t,
ut(xatn+l) = utfl//(TiJrl)- (28)
Compute the pressure field
X, 1,
p(x7tn+l) - IP(Ttﬁ»l) (29)

Compute the stress-tensor field z(x, #,,) by the following steps:
5.1 Calculate the integration nodes 7,(¢),k = 1,...,N, using the procedure described in Section 3.1
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5.2 Compute the components of the Finger tensor on rigid boundaries, inflows and outflows accord-
ing to the equations presented in Section 3.2.1.
5.3 Calculate the components of the new Finger tensor Bi{ (x,2,11) from Eq. (17) (see Section 3.2).
5.4 Compute the components of the new extra-stress tensor (X, #,.1) from (22) (see Section 3.3).
Step 6: Compute the components of the new tensor S(x,¢,,;) by using (9).

5. Basic finite difference equations

For solving numerically the equations presented in Section 4 a finite difference method is used with a stag-
gered grid, having cell spacings Ax and Ay, to ensure coupling between the velocity and pressure fields.
Fig. 4(a) displays the position of the variables in a given cell. The momentum equations for the velocity com-
ponents u and v are solved at the cell faces (i + % ,j) and (i,j+ %), respectively, whereas the equations for the
pressure, the extra-stress tensor, the Finger tensor and the non-Newtonian tensor S are calculated at cell cen-
tres. The flow domain is mapped by an orthogonal Cartesian mesh having four types of cells, as schematically
shown in Fig. 4(b) for a two-dimensional flow, which can be described as

e Full (F) cell — Interior cells full of fluid.

e Boundary (B) cell — Cells that define a rigid boundary. In these cells the no-slip condition is applied and the
Finger tensor is calculated according to the equations derived in Section 3.2.1.

e Inflow (I) cell — Cells that define an inflow boundary.

e Outflow (O) cell — Cells that define an outflow boundary.

The equations referred to in Steps 1-4 of the previous section are identical to those used for computing the
flow of an Oldroyd-B fluid and the corresponding finite difference equations have already been presented by
Tomé et al. [45]. Therefore, here only the finite difference equations for calculating Steps 5 and 6 are described
in the following sub-sections.

5.1. Approximation of the Finger tensor

To calculate the Finger tensor from Eq. (16) the time derivative is discretized using the explicit Euler
method, the velocity gradients are computed by central differences and for the convective terms the CUBISTA
high resolution scheme [2] is used. Details of the implementation of the CUBISTA scheme for two-dimen-
sional flows can be found in [8]. Therefore, the component B of the Finger tensor is calculated by

a
F|F|F|F|o
v F|F|F|F|O
i,j+1/2
F|F|F|O
S £
F|F|F|F|lO
I|F|F F|F|F|F|F|F|F|O
I|p|F F F|F|F|F|F|O
[A]
F
":-1/2J| T,;0 5 Iui+1/2j LIFIFIFIFIFIFIFIFF C
F|F|F|F|O
i F|F| FlF|oO
F|F|F|F|O
F|F|F|F
v- 0o
i,j-1/2

Fig. 4. (a) Typical cell for fluid flow calculation, and (b) types of cells within the mesh. The cells describing the type of boundary (I, B, O)
lie outside the flow domain.
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‘ } (30)

(in Eq. (30), no summation over column of index i and row of index j in the mesh) where

d
— [wBl, ()] +

Ou, ! Ou,
X; a -B/t (”)|1/+BP

o, e W)l

B (tnin) = BZI([”)([”) + Af{ -

o, . {f . {),
ax; ij A)C] ’
where «/" indicates the value of the velocity component u,, at the positive face of the cell (7, /) in the direction /.
According to Fig. 4(a), /* in the direction x is represented by the subscript (i +1, /).
Velocities which are not defined at the centre of a cell face are obtained by arithmetic averaging the nearest
neighbours in all directions. For instance

= 025 (st 2+ 0.

U; Jt+3

Eq. (30) is solved for each full cell (7, j) for each past time #,(¢,),k = 0,1,..., N and it convects the deformation
fields By (,,) )(t,) at past times #,(z,) to the next time level = ¢,,,. Having calculated B, y(tu11), the new values
of #,( ,H]) in the interval [0,7,,] are obtained using the procedure described in Section 3.1 and the values of
B,/k(,m)(tﬂ“) are then computed by a second-order interpolation using Eq. (18).

5.1.1. Approximation of the Finger tensor on mesh boundaries
To compute the advective terms of Eq. (30), the values of the Finger tensor on the centre of the boundary
cells (cells B, I and O in Fig. 4(b)) are required and they are obtained as follows:

e Rigid boundaries: These boundaries are identified by boundary cells (B) which have one face in contact
with an interior cell (F). For instance, if a B cell has the right (or left) face in contact with an F-cell (see
Fig. 5(a)) then we assume that the rigid boundary is vertical passing on the (i +1)-face (or (i —1)-face) of
the B-cell and compute the components of the Finger tensor on the centre of this face from Eq. (19)
which are approximated by

Bty = 1 (31)
nt nt ou'
Bz’ (tn+1)|(z+— ) B ( n)| (i+5.) + Sta ( n+1)|(i+%,j)a (32)
a ' n
B:/t(tn+l)| (i+4.) Bn( )‘ (i+L.) ) T 28ta ( n+1)| i+5 jB t( )|(i+%,j)7 (33)

where the superscripts t and n denote directions tangent and normal to the rigid boundary, respectively.
The velocity derivative a“ 1s calculated by the second-order formulae

out

a (tn+l)|(z+ J) (3uz+l J i+2,j/3)/6xnv

n

where the velocities u} 41, and u; ., are obtained by averaging the two nearest grid values, namely,

¢ Vi1,j44 + Uit1,j-1 ¢ Vit i+l + Uipo,j-1

Uity = 5 0 My = 2

The components of the Finger tensor at the centre of cell are then obtained by linear extrapolation be-
tween the points (i + 1/2,5) and (i + 1, ), which gives

Bﬁq(tnﬂ)‘ - 2qu( n+1)|(i+71 qu( )‘ (i+1,)" (34)
The case of a B-cell having the (j +1)-face or the (j —1)-face in contact with a F-cell face is treated
similarly.

e Corners: It may happen that the contour changes its direction abruptly; in this case, a B-cell would have
two adjacent faces in contact with F-cells faces (see Fig. 5(b)). For these cells the components of the



4218 M.F. Tomé et al. | Journal of Computational Physics 227 (2008) 42074243

b
F
a
Q+1/2, j)
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B F F (i+1, j)
(i+1/2, j)
O ¢ ° °
@, j) (i+1, j) (i+2, j)

Fig. 5. Computation of the components of the Finger tensor at the centre of the boundary cell B; ;.

Finger tensor are first calculated on both faces of the B-cell in contact with the F-cell faces and interpo-
lated to the centre of the B-cell in the two directions. The components of the Finger tensor at the centre
of the B-cell are then computed by averaging the values obtained at the centre of the B-cell in the two
directions.

5.2. Time-step calculation

A time-stepping procedure for computing the time-step size for every calculational cycle is employed. It is
based on the following stability conditions (written in non-dimensional form):

ox

ot < — 35

1 < u ) ( )
| B

b, < abtyon 7z i We > 1, (36)

Oty < oL OtNewt if We < 17 (37)

where 0 < o« < 1 and

1 8252 ;

5 sz Re if Re <1,
8tNewl = 1

2

82 857

7102 otherwise.

Eq. (35) is understood componentwise. The time-step employed in the calculation is 6z = FACT min{d¢,
ot} where FACT < 1. The implementation of these equations follows the same ideas used by GENSMAC
(see [47)).

6. Validation of the extra-stress calculation

To validate the numerical procedure for the extra-stress tensor calculation, predictions are carried out for
steady shear and elongational uniaxial flows for which there are analytic solutions for the UCM model. For
steady shear flow, the components of the extra-stress tensor ' and 7 will not be computed because the com-
ponents of the Finger tensor are first degree polynomials for which the Euler method provides the exact solu-
tion. Regarding uniaxial elongational flow, the error in the component 7 was much smaller than the error for
the component t™ and for this reason only these will be presented.

The errors obtained by the numerical method are a function of the shear rate  and of the elongation rate ¢,
for a given A. The number of fields, Bt;(t), will be varied by changing the number of subintervals, N, in [0, 7.

For both steady flows the Finger tensor is calculated by introducing the velocity field into Eq. (16). For
shear flows, the following expressions are obtained:
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(i) (i) (iii)
u =7y, LBy = 0, 1+20—1) 9(t—=7) 0 (38)
v=0, GBI =1B},  Bu(t)= pe—1) 1 0
w=0, ipy = Zny,y, 0 0 1

For negative values of # the Finger tensor is assumed to be By(¢). In this case, the exact solution for the extra-
stress tensor can now be obtained by solving the integrals:

0 t—7 -7
2 (f) = / Mo (=) 1+ 922 + [ Doexp (14720 — 1), (39)
o M A /11 M
() = /0 N exp (=120 Goyde + / @ ep (=255 = £)ar (40)
- . )v] p ;Ll / l p /11 / )
0 a — 7
‘E’W(ZL) — .L-Zz(t) = )— €Xp ( )dt + / — €Xp ( )dt s (41)
V1 1
leading to the following stress fields:
(1) = @@ (1+728) + a1 - &) + a7 [22 — & (2 + 20+ 27), (42)
(1) = i (1-¢7), (43)
() = (1) = ar. (44)
For the uniaxial elongational flow we have
(i) (i) (i)
u = éx, g2ilr=1) 0 0
5By = 2¢B, , 45
V= —%Sy’ { ot Bt/(t) — 0 e—g([—[’) O . ( )
)y )y
. EtBt’ - SBt’ ’ . /
w=— %82, 0 0 e—a(z—t)

Again, as for shear flows, for negative values of # the Finger tensor is set to that at ¥ = 0. The extra-stress
tensor is calculated by solving the integrals

Txx(t):/() %e< ) o2t gy _,_/0 jl (7%)62é(1—1’)dt/’ (6)

‘1

oo

0 1=t t —’T—” ) )

‘L'W(t) = Tzz(t) = / C:e< ’1) ~it 44 _'_\/O jie( P )e—s(t—t)dt/’ (47)

which gives
N —t(1 —248) 1 a

r‘(t)—alexp( p ){1 1_221‘&‘]—1—1_2&1&7 (48)
t(l + /118) 1 a;

W(F) — _ - . \

T (t) a; exp( i >[ H_)A + 1T e ( 9)

For these flows, the component 7 grows with time and exhibits a singularity at 1,& = % To keep v bounded,
values of 4, and ¢ will be used so that ;& < 1.

The methodology described in Sections 3.1-3.3 for obtaining numerically the components of the extra-
stress tensor was applied to shear and elongational flows and the numerical predictions were compared with
the corresponding analytic solutions in Figs. 6 and 7.

Figs. 6 and 7 show the relative error in the computation of the stress component t for shear and uniaxial
elongational flows at time # = 104,. The model parameters were a; = 100 Pa and A, = 1 s, the time-step size
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Fig. 6. Relative error in the computation of t at time ¢ = 104; as a function of N. The shear rate is y = 1s7!, the strain rate is
i=03s'and 1, =1s.
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Fig. 7. Relative error in the computation of t for shear and elongational flows as a function of 7 and ¢. The number of fields N = 50 and
the relaxation time 4; = 1 s were kept constant.

used in the explicit Euler method was 8¢ = 10 s and the shear rate and the elongation rate were kept fixed at
7= 1s""and &£ = 0.3 s7!, respectively. Fig. 6 shows a reduction in error directly proportional to the number of
fields N. However, for shear flow the error is constant because, in this case, the component B* of the Finger
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tensor is a second-order polynomial which is exactly captured by the used interpolation scheme and the quad-
rature formula. Therefore, ™ in this shear flow is independent of N and the only contribution to the error
comes from the numerical solution of the Finger tensor B, (¢) by Eq. (38) using the explicit Euler method.
In Fig. 6, our numerical predictions are also compared with the results of Hulsen et al. [15]: for shear flows the
errors obtained using our method are much smaller than the errors obtained by their method, whereas for the
extensional flow their method is of higher order and consequently, their errors decay faster with N than ours.
We believe that the main reason for this behaviour lies in the way the subintervals are considered. In our case,
the interval [0,#,.4] is discretized every time-step so that the new integration points # (¢,+1),k =1,...,N are
recalculated. Due to the fast decaying memory function M (¢t —¢), if ¢, is large than the first interval
[0, (t,4+1)] can become very large and the interpolation formulae may not produce accurate approximations
in this case. Hulsen et al. dealt with this situation by neglecting this first interval every time a new interval is
created (for detail see [34]). We believe Hulsen et al. procedure may not be effective for general flows and for
this reason we did not adopt their procedure. However, we have been investigating a more adequate procedure
for discretizing the interval [0, #,,] so that subintervals having large lengths are avoided.

7. Validation and convergence results

The finite difference equations described in Section 5 were implemented into the FreeFlow2D code [30] to
simulate two-dimensional flows governed by the integral Upper-Convected Maxwell and K-BKZ constitutive
equations. In this section, predictions of channel and contraction flows are presented and compared with lit-
erature data, when available.

7.1. Upper-convected Maxwell model

The first validation is carried out for two-dimensional channel flow of an UCM fluid. As shown in Fig. 8,
the channel width is L, its length is 10L, and other input data are

e Velocity scale: U = 1 ms™', Length scale: L = 0.01 m,
e Kinematic viscosity: vy = ny/p, = 0.0l m? s~

o Maxwell model parameters: a; = 1000 Pa and 4; = 0.01 s,
e Error tolerance for the Poisson equation: EPS = 1071,

e Number of fields: N = 50.

For these parameters we get Re = UL/vy = 1 and We = 4;U/L = 1. At inflow, the velocity was defined by
the parabolic profile

u(y) = —4(y — 0.5 + 1 (50)

and the Finger tensor was calculated using Eq. (20). It can be shown that in this case, the components of the
extra-stress tensor are also given by Eqs. (42)—(44).

We point out that under steady state conditions these analytic solutions are valid at any cross section of the
channel.

10L

Fig. 8. Flow in a two-dimensional channel: domain description.
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To demonstrate the convergence with mesh refinement of the numerical method presented in this paper, the
channel flow was simulated using four consecutively refined meshes: mesh M1 with 10 x 100 cells, mesh M2
with 20 x 200 cells, mesh M3 with 30 x 300 cells and mesh M4 with 40 x 400 cells.

The simulations started with the channel full of fluid at rest and the Finger tensor was assigned the value 1.

FreeFlow2D simulated this problem until # = 100 s after which the contour lines of velocity and stress were
seen to be parallel indicating that steady state had been reached (for reasons of space these plots are not
shown).

To demonstrate the convergence of the numerical method the predictions obtained on the four meshes were
compared with the corresponding analytic solution at the cross section in the middle of the channel (x = 5L).
These results are displayed in Figs. 9-11 and show differences of less than 1% for mesh M4. Moreover, as the
mesh is refined the error between the numerical solution and the analytic solution decreases so that we can
conclude that the numerical method developed in this work converges towards the true solution.

7.2. K-BKZ model

The numerical technique presented in Section 3 has been applied to simulate the flow in a two-dimensional
channel using the integral K-BKZ constitutive equation. The flow input data were the same as for the UCM
flow and the K-BKZ parameters used were those employed by Quinzani et al. [38]in the experimental study of
the flow in a planar contraction of a Boger fluid (see Table 1). The velocity scale was U = 0.167 m s~!, leading
to We =1 and Re = 0.94. Again, the FreeFlow2D code simulated this problem using meshes M1, M2 and M3
until steady state was reached.

There is no available analytic solution for this problem so the solutions obtained on meshes M1 and M2 are
compared with the solution obtained on the finer mesh M3. The results obtained for the velocity u and the
extra-stress component v are shown in Fig. 12, where we observe good convergence with mesh refinement.
Similar results were obtained for the shear stress ¥ and the normal component ¥ (not shown for
compactness).

T T
— analytic solution
¢ mesh M4
A mesh M2
e mesh M1

0.8 0.9 1

Fig. 9. Numerical and analytic solutions of velocity u at time ¢ = 100 s at position x = 5L. The solid line represents the analytic solution
while the numerical solutions are represented by symbols.
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Fig. 10. Numerical and analytic solutions of t at time ¢ = 100 s at position x = 5L. The solid line represents the analytic solution while

the numerical solutions are represented by symbols.
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Fig. 11. Numerical and analytic solutions of ™ at time ¢ = 100 s at position x = 5L. The solid line represents the analytic solution while

the numerical solutions are represented by symbols.

7.3. Comparison with experimental results: K-BKZ fluid

The constitutive model K-BKZ was also used to predict the flow through a 4:1 planar contraction and the
numerical results are compared with the experimental data of Quinzani et al. [37]. These authors employed
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Table 1

Parameters for the K-BKZ model of the fluid studied by Quinzani et al. [38]: « = 10, f = 0.7 (from [24]), n, = 1.424 Pas, 1y = 0.06 s
k Ak (8) . (Pas) a (Pa)

1 0.6855 0.040 0.058352
2 0.1396 0.2324 1.664756
3 0.0389 0.5664 14.560411
4 0.0059 0.585 99.152542

Fig. 12. Numerical simulation of channel flow using the K-BKZ model: Re = 0.94 and We
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laser-Doppler velocimetry and flow-induced birefringence techniques to measure the velocity and stress fields
of the flow in a planar 3.97:1 contraction of a 5 wt% solution of polyisobutylene in tetradecane. The rheology
of this fluid was extensively characterized by Quinzani et al. [38], over a range of temperatures, in steady and
transient shear flows and the data fitted by several four-mode viscoelastic models, namely the Oldroyd-B,
Giesekus and Bird-DeAguiar models. Azaiez et al. [4] used the same experimental data to validate their
numerical technique, but using the Giesekus, FENE-P and PTT constitutive equations, and obtained good
qualitative agreement between their predictions and the experimental results. Also for the same fluid, Mitsou-
lis [24] determined the parameters o and f used to fit its rheology with the K-BKZ equation
(0 =10 and p = 0.7). The four-mode linear viscoelastic spectrum for this fluid is well predicted using the
set of parameters g, in Table 1 (a; = %) which will also be used here during the validation against Quinzani’s
data.

Using the parameters of Table 1, and the values of «, f given by Mitsoulis [24], the material functions
n= %and'Pl = T“,;J” were computed using the numerical method described in Section 3, as a function of

the shear rate y and compared with Quinzani et al. [38] data in Fig. 13. The predicted steady shear rheology
is in good agreement with the experimental data of Quinzani et al. [38]. In addition, the material functions

nt(t,y) = Lf’) and ¥V (1,7) = M were also computed and these predictions are compared in Fig. 14 with
Quinzani’s data showing again good agreement, especially for large times and large values of the shear rate.

The following predictions concern the flow of a K-BKZ fluid through a planar 4:1 contraction having a
downstream half-width of 2 = 0.32 cm (see Fig. 15). This is the experimental setup of Quinzani et al. [37],
where the length of the inflow was 2H = 2.54 cm; here the value used was 2H = 2.56 cm in order to define
a 4:1 contraction ratio.

In order to compare the numerical results with the experimental data of Quinzani et al. [37], the stress and
the velocity components are given in dimensional form. Moreover, the same definitions for the Reynolds and

the Deborah numbers are employed, namely
2hp(v)

Mo

Aot bbb A b

,2 4 1 (Quinzani et al.)

n[Pa.s],¥, [Pa.s’]

- ¥ (Quinzani et al.)

= Numerical results

4 ! ! ! !

1072 107" 10°

Y [s7]

Fig. 13. Numerical results obtained for # = T— and ¥, = Z5% varying with . Comparison with the experimental data presented by
Quinzani et al. [38]. Input data used from Table 1.
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Fig. 14. Numerical results obtained for #*(z,7) = =<2 and Yity) = M varying with time ¢. Comparison with the experimental
data presented by Quinzani et al. [38]. Input data used from Table 1.

and
De = /10’97
where y = % and (v) is the bulk velocity at the downstream channel.

Quinzani et al. [37] performed measurements of the stress and velocity fields at six different flow rates. The
predictions presented here use the model of Table 1 and are compared to the data of experiments 3 and 5 of
Quinzani et al. [37], for which Re = 0.27 and De = 1.39 and Re = 0.56 and De = 2.9, respectively. The bulk
velocities in the downstream channel were (v) = 7.44 cm/s and (v) = 15.5 cm/s for experiments 3 and 5,
respectively. At the entrance (inflow) a Poiseuille velocity profile was imposed.
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Fig. 15. Computational domain used in the simulation of the flow through a two-dimensional 4:1 contraction.

The comparison between the predictions and the experiments for Re = 0.56 and De = 2.9 are displayed in
Figs. 16-18.

Figs. 16 and 17 show transverse and axial profiles of the streamwise velocity component (u) upstream the
contraction plane, respectively. It can be observed the flow acceleration in the central region of the channel
and the flow deceleration near the walls, as the fluid approaches the contraction plane. The agreement with
the experimental data is better at points far from the contraction entrance. For the axial profiles, shown in
Fig. 17, the agreement is better than for the transverse profiles, a fact also reported by Azaiez et al. [4].

Regarding the flow in the downstream channel, transverse profiles of u, N; and t* are presented in Figs.
18-20 at different streamwise locations. The predicted profiles of v agree well with the experimental data
of Quinzani et al. [37] whereas the predictions of u and N, agree with Quinzani’s data only qualitatively. Nev-
ertheless, the predictions of N| are fair and capture the smooth change in the shape from concave to convex
and the quick variations near the centre plane. For the velocities, the predictions are higher in the central
region of the channel and lower elsewhere suggesting that flow development is faster in the predictions than
in the measurements.

0.18 T T T T T T T
® x/L=-10.0
v xL=-20 |
A x/L=-15
* x/L=-1.0
¢ xL=-0.5 _

u [m/s]

y/L

Fig. 16. Numerical simulation of the flow through a 4:1 contraction and comparison with experimental data of Quinzani et al. [37]
(Re = 0.56 and De = 2.9). Numerical and experimental results obtained for the velocity u(y) at various axial locations, x/L. Numerical
solutions are represented by continuous curves.
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Fig. 17. Numerical simulation of the flow through a 4:1 contraction and comparison with experimental data of Quinzani et al. [37]
(Re = 0.56 and De = 2.9). Numerical and experimental results obtained for the velocity u(x) at various transverse locations, y/L.
Numerical solutions are represented by continuous curves.
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Fig. 18. Numerical simulation of the flow through a 4:1 contraction and comparison with experimental data of Quinzani et al. [37]
(Re = 0.56 and De = 2.9). Numerical and experimental results obtained for the velocity component u(y) at several axial locations, x/L
along the exit channel. Numerical solutions are represented by continuous curves.

In general, the predictions far from the contraction entrance, where extensional flow is weak, are better
than in this region because the constitutive equation was fitted only to shear rheology. The absence of
extensional rheology data in Quinzani’s paper does not allow us to be sure that the K-BKZ model is the
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Fig. 19. Numerical simulation of the flow through a 4:1 contraction and comparison with experimental data of Quinzani et al. [37]
(Re = 0.56 and De = 2.9). Numerical and experimental results obtained for N, (y) at several axial locations, x/L along the exit channel.
Numerical solutions are represented by continuous curves.
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Fig. 20. Numerical simulation of the flow through a 4:1 contraction and comparison with experimental data of Quinzani et al. [37]
(Re = 0.56 and De = 2.9). Numerical and experimental results obtained for v (y) at several axial locations, x/L along the exit channel.
Numerical solutions are represented by continuous curves.

constitutive equation that better represents the behaviour of the fluid in flows with strong extensional effects.
This is a problem that also affects other attempts of validation as will be shown next.

The profiles of the centreline velocity and N, along the centreline are plotted in Fig. 21 and compared with
both the experimental data of Quinzani et al. [37] and the predictions of Azaiez et al. [4] using a differential
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Fig. 21. Numerical simulation of the flow through a 4:1 contraction and comparison with experimental data of Quinzani et al. [37]
(Re = 0.56 and De = 2.9). Comparison of experimental and numerical results along the centreline for (a) velocity component u and (b)
first normal stress difference, N;.

Giesekus model. Note that Azaiez et al. [4] also calculated Quinzani’s flow using the PTT and FENE-P models
and showed these predictions to be worse than their predictions using the Giesekus model. The agreement
between the three sets of data in Fig. 21 is fair and whereas our predictions of u agree better with those of
Azaiez et al. than with the experimental data, for N it is the other way around. The level of agreement
between our predictions and the measurements is similar to the level of agreement of Azaiez’s predictions
and Quinzani’s experiments. We see that our and Azaiez’s predictions are closer to each other than to the
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experimental data, and this suggests that the discrepancies are associated with an inability of both constitutive
equations (K-BKZ and Giesekus) to predict well the experimental data in extensional flow.

The comparison between the predictions and the experimental data for Re = 0.27 and De = 1.39 shows a
similar behaviour as the case just presented (Re = 0.56 and De = 2.9), and the same level of agreement/dis-
agreement, hence no further results are presented for conciseness.

8. Numerical simulation of contraction flows

In this section, results of numerical simulations of the flow through a planar 4:1 contraction, using the inte-
gral constitutive UCM and K-BKZ models, are presented. The flow domain is that shown in Fig. 15 and here
the case of non-negligible inertia is investigated in detail, assessing the combined effects of viscoelasticity and
inertia by varying the Weissenberg number for two different values of the Reynolds number
(Re =0.1 and Re = 1.0).

8.1. Single mode UCM model
For the single mode UCM model the input data employed were:

Length of the channels: Ly = 16 cm and L, = 16 cm;

Width of the channels: 2H = 8 cm and 24 = 2 cm;

Mesh definition: dx = 3y = 0.1 cm (mesh with (80 x 320)-cells with a total of 16,000 F-cells);
Poisson solver tolerance: EPS = 107" (EPS is defined as the L, residual norm);

e Density of the fluid: p = 1000 kg m~3; dynamic viscosity: 1, = 10 Pas;

o Number of fields used: N = 50 (or number of points used to discretize the time interval [0, 7]).

The scale parameters used for the normalization were: L = 0.01 m, 4y = A; (defined below), U = 0.1 ms~!

for Re = pUL/n, = 0.1 and U = 1 ms™! for Re = 1. At the fluid entrance a parabolic profile for the velocity
was imposed, with V,.x = U/4. For the UCM model, the value of 4, and so the value of a; (a; = n,/41) were
calculated as a function of the Weissenberg number, We = 1, U/L.

The FreeFlow2D code simulated the 4:1 contraction problem for the Weissenberg numbers
We = 0 (Newtonian),0.25,0.5,1.0,...,4 from the start up until the steady state was reached.

Figs. 22 and 23 display the streamline patterns as a function of We for Re = 0.1 and Re = 1, respectively,
and Table 2 lists the dimensionless size of the corner vortex which is also plotted in Fig. 24 for a better visu-
alization of the effects of Re and We. As for Re = 0 (cf. [1]), Figs. 22 and 23 show that the length of the corner
vortex for the UCM fluid decreases with We at each Reynolds number, with inertia also reducing its size.
Moreover, for We = 4, the streamlines indicate the appearance of a small lip vortex at the reentrant corner
for both values of Re, although here the mesh is still rather coarse. This flow has been simulated by various
research groups using differential constitutive models like Oldroyd-B, UCM, PTT and these results are in
agreement with their data (at least qualitatively). The appearance of a lip vortex for creeping flows
(Re = 0) has been reported by several authors, such as Grossi et al. [12], who used a finite difference method
for the Oldroyd-B model at Re = 0.01 and in the finite-volume calculations of Alves et al. [1] for the same fluid.
These authors used very fine meshes and high resolution schemes reporting the appearance of a small lip vor-
tex for De > 1. However, for Re = 1 Grossi et al. [12] did not report any lip vortex in their calculations. By
using a semi-Lagrangian technique, Phillips and Williams [35] simulated the same flow for Re = 0 and Re = 1
and while they showed a small lip vortex for We = 2 and We = 2.5 at Re = 0, no lip vortex was seen for inertial
flows at Re = 1.

In summary, the results obtained in this work for Re = 0.1 agree qualitatively with those presented in the
literature, but show a lip vortex at We = 4 for Reynolds numbers between 0.1 and 1. To investigate whether
our observation was due to insufficient mesh refinement, a simulation was carried out using a finer mesh hav-
ing twice as many cells in each direction ((160 x 640)-cells) and the corresponding streamline plot at We = 4 is
shown in Fig. 25. Again, the lip vortex is present, but now it is better resolved. This fact has not been previ-
ously reported in the literature at such high Weissenberg numbers and requires further investigation. Another
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Table 2

Corner vortex size as a function of the Weissenberg number for the UCM model for Re = 0.1 and 1

We 0.0 0.25 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0
Re=0.1 1.447 1.417 1.376 1.304 1.246 1.202 1.165 1.133 1.111 1.095
Re=1.0 1.271 1.227 1.176 1.089 1.016 0.959 0.909 0.856 0.820 0.768

1.5 :
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. = Re =0.1
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Fig. 24. Corner vortex size as a function of the Weissenberg number for the UCM model at Re = 0.1 and 1.

Fig. 25. Numerical simulation of the flow through a planar 4:1 contraction using the UCM model. Streamlines plots obtained at
Re =1.0 and We = 4 on a finer mesh with (160 x 640)-cells.

important conclusion here is that the present numerical method was able to calculate flows governed by the
UCM model for the benchmark case of the 4:1 planar contraction, reaching high We numbers.

In order to further clarify these observations and to ensure that they are independent of the numerical
method used, the finite-volume numerical method (FVM) of Alves et al. [1] was employed to simulate the same
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flow for the UCM fluid at Re = 0.1 and 1 and the corresponding results compared with the predictions of the
FreeFlow2D code. Here, only data for Re = 1 is shown for compactness. Note that these calculations using
the FVM concern the UCM model described by a differential constitutive equation.

The finite-volume predictions were obtained using meshes M2 and M4 of Alves et al. [1], the characteristics
of which are summarized in Table 3. The meshes used here with integral methods are uniform and conse-
quently can only be refined near the contraction, at the cost of a large increase in the total number of cells,
whereas the finite-volume code allows for meshes with cells of variable size. The consequence is that these
meshes are significantly finer than those used here with the integral methods in the contraction region
(Axt, = Ay:. = 0.1), although mesh M2 has less computational cells (10,587 against 16,000).

Mesh refinement is required especially near the contraction and to see this Fig. 26 compares the streamwise
profile of the first normal stress difference, along the centreplane, obtained by the finite-volume code with the
two meshes. This quantity is plotted in normalized form as N, /z,, where 7, is the fully-developed wall shear
stress in the downstream channel. The first normal stress difference exhibits a peak around the contraction
plane, which increases with fluid elasticity, and Fig. 26 shows that the results obtained with meshes M2
and M4 collapse, except for We = 4 where a small difference is seen, and that an increase of flow elasticity
pushes the location of the peak downstream.

The corner vortex length plot of Fig. 27 compares the results obtained by the different methods and meshes.
The extrapolated results presented in Fig. 27 were obtained using Richardson’s extrapolation to the limit, and
assuming that the FVM is second-order accurate, a result which has been demonstrated previously (e.g. [1]).

Table 3

Main characteristics of the meshes used in the finite-volume computations

Mesh NC A]‘fnin = Ay:nin
M2 10,587 0.014

M4 42,348 0.0071

NC - Total number of cells; Ax* — normalised cell size in streamwise direction (Ax* = Ax/h); Ay* — normalised cell size in transverse
direction (Ayx = Ay/h).

o Newtonian (M2)
— Newtonian (M4)
1.0 + & We=1 (M2)
— We=1 (M4)
o We=2 (M2)
0.8 1 — We=2 (M4)
o We=3 (M2)
— We=3 (M4)
. %51 x We=4 (M2)
Ay — We=4 (M4)
Z
0.4 +
0.2+
0.0 ¢
-0.2
6 4 2 0 2 4 6 8
x/h

Fig. 26. Numerical simulation of the flow through a 4:1 planar contraction using the differential form of the UCM model, using the finite-
volume code of Alves et al. [1] and meshes M2 and M4. Contours of N, /t,, along the centreplane for Re = 1 and various Weissenberg
numbers. Symbols: Mesh M2; lines: Mesh M4.
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Fig. 27. Numerical simulation of the flow through a 4:1 planar contraction for Re = 1. Corner vortex length as a function of the
Weissenberg number. Comparison with the finite-volume predictions obtained with the finite-volume code of [1].

The average difference between the FreeFlow2D results and the extrapolated FVM results is only 3.8%, show-
ing the good accuracy of the FreeFlow2D results even though the rather coarseness of the mesh in the vicinity
of the reentrant corner. We note that for the similar benchmark flow problem, at creeping flow conditions, the
differences observed between the benchmark data of Alves et al. [1] and other results from literature is much
higher, as can be assessed from Fig. 1 of Alves et al. [1]. More recently the accuracy of the benchmark data of
[1] has been confirmed by Belblidia et al. [11].

The streamline contour plots presented in Fig. 28, for We = 0 and 4 at Re = 1, confirm the effect of We in
reducing the size of the corner vortex and the existence at We = 4 of a small lip vortex, which here is well
resolved by several cells due to the local mesh refinement. This lip vortex is accompanied by large viscoelastic
normal stresses as is obvious from the comparison of the contour plots of Ny /1, in Fig. 29 for the Newtonian
and We = 4 flows.

Still, there are small discrepancies between the predictions obtained by the finite difference method for the
integral UCM equation and the finite-volume method for the differential UCM model, which can be seen in
the comparisons of Figs. 30 and 31. These differences are due to insufficient mesh refinement close to the con-
traction in the FreeFlow2D calculations, the need of which increases as the Weissenberg number is raised. In
Fig. 30, the plots of N, /t,, show that the FreeFlow2D code slightly overestimates this quantity, with the dis-
crepancies increasing with We in both value and width of the peak, which widens and is located further down-
stream in the FreeFlow2D code results. On moving downstream a delay in flow redevelopment is also
apparent with the FreeFlow2D code results, which again overpredicts N,/t,. The larger peak values of
N, /z,, obtained with the FreeFlow2D code are a consequence of a larger overshoot of the streamwise velocity
along the centreplane, as can be seen in the plots of Fig. 31. Further downstream good agreement on N, is
observed. We have further refined the mesh used in the FreeFlow2D simulations by increasing the number
of cells in each direction by a factor of 1/3 and there have been improvements, as we can see from the velocity
profiles in Fig. 32, in particular for the lower value of We. Unfortunately, the computational overhead of these
calculations is enormous and this calculation took now circa 6 weeks of CPU time on a Sunworkstation 8 GB
memory to converge. Clearly, further mesh refinement is required for an improved comparison, but the cost is
prohibitive with our current available computational resources using the integral constitutive equation and the
FreeFlow2D code.



M.F. Tomé et al. | Journal of Computational Physics 227 (2008) 42074243 4237

| =\

Fig. 28. Predicted streamlines for the flow through a 4:1 planar contraction for Re = 1 using the finite-volume code of Alves et al. [1]. (a)
Newtonian; (b) UCM model with We = 4.

8.2. K-BKZ model

The flow through the 4:1 planar contraction was also simulated with the K-BKZ constitutive equation, but
with different viscoelastic spectra than that used in Section 7.3.

The parameters used to specify the fluid rheology were the same used by Mitsoulis [25], who simulated the
flow of fluid S1 through an axisymmetric 24:1 contraction, and are listed in Table 4. The scaling parameters
used were U = (v) where (v) represents the average velocity in the exit channel, L =& (see Fig. 15) and
Awef = Ao, Where Jg is the relaxation time found for the UCM Maxwell (see [25]). Thus, the Weissenberg num-
ber is given by

e = iy L) (51)
h
with 1g = 2.3 s.
The computational domain was identical to that used for the UCM calculations.
The simulations for We =1 and We =2 were performed until = 20s and the remaining simulations
(We = 3,4,5,6) were carried out until time ¢ = 46 s. The size of the corner vortex and the values of the cor-
responding Weissenberg and Reynolds numbers are listed in Table 5 and plots of the streamlines for
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Fig. 29. Contours of N /1, for the flow through a 4:1 planar contraction at Re = 1 using the finite-volume code of Alves et al. [1]. (a)
Newtonian; (b) UCM model with We = 4.

0.8

0.6

N1/Tw

0.4

0.2

0.0

Fig. 30. Numerical simulation
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of the flow through a 4:1 planar contraction for Re = 1. Contours of N;/7, along the centreplane for

various Weissenberg numbers. Comparison with the finite-volume predictions obtained with the finite-volume code of [1].
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Fig. 31. Numerical simulation of the flow through a 4:1 planar contraction for Re = 1. Contours of the axial velocity in the centreplane
near the contraction. Comparison with the finite-volume predictions obtained with the finite-volume code of [1].

We = 1,3,5 are shown in Fig. 33. As for the UCM model, the length of the corner vortex decreases with the
Weissenberg number, but note that the Reynolds number is increasing at the same time so it is not easy to
compare these values with those from the UCM model. The main conclusion here is that the present numerical
method is able to simulate the flow of a multimode K-BKZ constitutive equation. Together with the simula-
tions for the UCM model, this demonstrates the ability of the present numerical method to handle properly
integral constitutive equations.

9. Conclusions

This work presented a numerical technique for simulating incompressible flows governed by the integral
constitutive equations K-BKZ and upper-convected Maxwell (UCM). The technique developed in this work
is based on the Marker-and-Cell method and employs finite differences on a staggered grid. The momentum
and the mass conservation equations were solved by the GENSMAC methodology [47], while the constitutive
equations were solved using the deformation fields method introduced by Peters et al. [34]. However, in this
work the deformation fields method was improved in several ways: the Finger tensor is computed by a second-
order interpolation formula and the integral constitutive equations were solved using a second-order quadra-
ture scheme derived using the method of undetermined coefficients (see [16]). Validation results for both the
UCM and K-BKZ models were presented. In addition, the flow through a planar 4:1 contraction was simu-
lated and the numerical results obtained with the K-BKZ equation were compared with the experimental
results of Quinzani et al. [37]. The results obtained with the UCM model were compared with the numerical
results obtained by the finite-volume methodology of Alves et al. [2]. The single mode UCM fluid flow sim-
ulations were carried out at Re = 0.1 and 1 for We between 0 and 4 and it was found that the lip vortex pre-
viously predicted under creeping flow conditions is still present at higher Reynolds numbers. In summary, the
numerical technique presented in this work proved to be able to simulate incompressible flows governed by the
integral form of the K-BKZ and UCM models. Moreover, the technique presented in this paper can be easily
extended to three-dimensional problems.

One important feature of this work was the use of the finite difference method for the simulation of incom-
pressible inertial flows (Re > 0) described by integral equations. As far as the authors are aware the existing
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Fig. 32. Velocity profile at the symmetry axis using coarse mesh (3x = 8y = 0.1 cm) and refined mesh (8x = 8y = 0.0667 cm).

Table 4

Parameters used in the K-BKZ equation of a fluid S1 (see [25])

k 2k (8) a (Pa)
1 0.0078 129.49
2 0.116 27.93
3 0.705 7.177
4 6.48 0.65

o« =250, f=0.0011, p = 886 kgm=3, iy = 13.68 Pas, 2y = 2.3 s.
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Table 5

Corner vortex size obtained with the K-BKZ model for various values of We and Re

(We, Re) (1.0,0.280) (2.0,0.560) (3.0,0.845) (4.0,1.130) (5.0,1.410) (6.0, 1.690)
Lyortex 1.351 1.095 1.020 0.920 0.867 0.701

Fig. 33. Numerical simulation of the flow through a planar 4:1 contraction using the K-BKZ constitutive equation for various
Weissenberg and Reynolds numbers. (a) We = 1, Re = 0.280; (b) We = 3, Re = 0.845; (c) We = 6, Re = 1.690.

techniques for solving integral constitutive equations have employed the finite element method to solve incom-
pressible creeping flows (Re = 0) only.
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